Futures Hedges under Basis Heteroscedasticity
نویسندگان
چکیده
منابع مشابه
The Lasso under Heteroscedasticity
Lasso is a popular method for variable selection in regression. Much theoretical understanding has been obtained recently on its model selection or sparsity recovery properties under sparse and homoscedastic linear regression models. Since these standard model assumptions are often not met in practice, it is important to understand how Lasso behaves under nonstandard model assumptions. In this ...
متن کاملGeneralized R-estimators under Conditional Heteroscedasticity
In this paper, we extend the classical idea of Rank-estimation of parameters from homoscedastic problems to heteroscedastic problems. In particular, we define a class of rank estimators of the parameters associated with the conditional mean function of an autoregressive model through a three-steps procedure and then derive their asymptotic distributions. The class of models considered includes ...
متن کاملThe Lasso under Poisson-like Heteroscedasticity
The performance of the Lasso is well understood under the assumptions of the standard sparse linear model with homoscedastic noise. However, in several applications, the standard model does not describe the important features of the data. This paper examines how the Lasso performs on a non-standard model that is motivated by medical imaging applications. In these applications, the variance of t...
متن کاملLinear classifier design under heteroscedasticity in Linear Discriminant Analysis
Under normality and homoscedasticity assumptions, Linear Discriminant Analysis (LDA) is known to be optimal in terms of minimising the Bayes error for binary classification. In the heteroscedastic case, LDA is not guaranteed to minimise this error. Assuming heteroscedasticity, we derive a linear classifier, the Gaussian Linear Discriminant (GLD), that directly minimises the Bayes error for bina...
متن کاملTests of linear hypotheses in the ANOVA under heteroscedasticity
It is often of interest to undertake a general linear hypothesis testing (GLHT) problem in the one-way ANOVA without assuming the equality of the group variances. When the equality of the group variances is valid, it is well known that the GLHT problem can be solved by the classical F-test. The classical F test, however, may lead to misleading conclusions when the variance homogeneity assumptio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ISRN Economics
سال: 2012
ISSN: 2090-8938
DOI: 10.5402/2012/481856